regarding the kähler-einstein structure on cartan spaces with berwald connection

نویسندگان

e. peyghan

چکیده

a cartan manifold is a smooth manifold m whose slit cotangent bundle 0t *m is endowed with a regularhamiltonian k which is positively homogeneous of degree 2 in momenta. the hamiltonian k defines a (pseudo)-riemannian metric ij g in the vertical bundle over 0 t *m and using it, a sasaki type metric on 0 t *m is constructed. a natural almost complex structure is also defined by k on 0 t *m in such a way that pairing it with the sasaki type metric an almost kähler structure is obtained. in this paper we deform ij g to a pseudo-riemannian metric ij g and we define a corresponding almost complex kähler structure. we determine the levi-civita connection of g and compute all the components of its curvature. then we prove that if the structure ( , , ) 0 t *m g j is kähler- einstein, then the cartan structure given by k reduces to a riemannianone.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strictly Kähler-Berwald manifolds with constant‎ ‎holomorphic sectional curvature

In this paper‎, ‎the‎ ‎authors prove that a strictly Kähler-Berwald manifold with‎ ‎nonzero constant holomorphic sectional curvature must be a‎ Kähler manifold‎. 

متن کامل

Cartan and Berwald Connections in the Pullback Formalism

Adopting the pullback approach to Finsler geometry, the aim of the present paper is to provide new intrinsic (coordinate-free) proofs of intrinsic versions of the existence and uniqueness theorems for the Cartan and Berwald connections on a Finsler manifold. To accomplish this, the notions of semispray and nonlinear connection associated with a given regular connection, in the pullback bundle, ...

متن کامل

Einstein–cartan Theory

Standard notation and terminology of differential geometry and general relativity are used in this article. All considerations are local so that the four-dimensional space-time M is assumed to be a smooth manifold diffeomorphic to R4. It is endowed with a metric tensor g of signature (1, 3) and a linear connection defining the covariant differentiation of tensor fields. Greek indices range from...

متن کامل

Kähler-Einstein fillings

We show that on an open bounded smooth strongly pseudoconvex subset of C, there exists a Kähler-Einstein metric with positive Einstein constant, such that the metric restricted to the Levi distribution of the boundary is conformal to the Levi form. To achieve this, we solve an associated complex Monge-Ampère equation with Dirichlet boundary condition. We also prove uniqueness under some more as...

متن کامل

Homogeneous Para - Kähler Einstein

A para-Kähler manifold can be defined as a pseudoRiemannian manifold (M, g) with a parallel skew-symmetric paracomplex structures K, i.e. a parallel field of skew-symmetric endomorphisms with K = Id or, equivalently, as a symplectic manifold (M, ω) with a bi-Lagrangian structure L, i.e. two complementary integrable Lagrangian distributions. A homogeneous manifold M = G/H of a semisimple Lie gro...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
iranian journal of science and technology (sciences)

ISSN 1028-6276

دوره 35

شماره 2 2011

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023